More unintended consequences of white roofs

In a previous post, White roofs and unintended consequences, I reported on research from Arizona State University that found white roofs decrease precipitation in the already dry desert. Obama’s Energy Secretary Steven Chu once pitched painting roofs white as a solution to global warming. Many people and businesses are installing white roofs to do their part, so they think.

As a result of that post, I was contacted by a representative of a major national manufacturer of membrane roofing systems, mainly for commercial and industrial applications. That company (Carlisle SynTec) produces both dark and white roofing systems. To my surprise, the company spokesman said that while white roofs may keep a building cooler, they nonetheless have some detrimental unintended consequences when used in cool climates. These unintended consequences include:

Elevated rooftop temperatures:

White roofs may keep the roof surface and building cooler, but, the heat has to go somewhere. Heat reflected from white roofs can cause the ambient air temperature above the roof to be hotter than it ordinarily would. That can effect the performance of air conditioning units in two ways. First, the higher temperature of the ambient air causes the A/C unit to work harder, using more energy.


Second, the electrical conduits feeding A/C units become less efficient when temperature rises, according to an article in IAEI magazine, a trade publication for electrical inspectors.

“The interiors of conduits in sunlight, such as those containing conductors feeding air conditioning units on rooftops, become significantly hotter than the outside air (which is always measured in the shade). Data show that these temperature differentials can easily reach 70°F, even when the conductors are electrically unloaded. Remarkably, the differentials were found to be essentially independent of the outdoor temperature all through the range from 70°F to above 100°F.”

“To determine the need for ampacity* corrections, these temperature differentials need to be added to the outdoor temperatures, which reach 90°F or higher in most areas of the USA during the summer months.”

“As might be expected, the temperature differential decreases the further above the roof the conduit is placed. So, for example, when summer temperatures reach 95°F in Chicago, the interior of a conduit lying directly on a roof might be 165°F, while the temperature in a conduit 12 inches above the roof might be 125°F. Interestingly, because light-colored roofs reflect more heat back onto the conduits than dark roofs, their conduit interiors are hotter at heights more than an inch or so above the roof.

*Ampacity: the maximum amount of electrical current a conductor or device can carry before sustaining immediate or progressive deterioration. Ambient temperature and the ability to shed heat affect the ampacity rating.

 Effects on neighboring buildings:

A white roof will reflect heat. If the building with a white roof is surrounded by taller buildings, that reflected heat impinges on neighboring buildings causing them to expend extra energy to keep cool.

Increased Energy Costs:

White roofs keep buildings cooler (depending on the insulation). But, if you are in a northern climate that requires heating in winter, the heating bills will be higher. For instance, the graph below from the Department of Energy’s “Cool Roof Calculator” shows the additional heating expense for white-roofed buildings in Detroit:


Moisture buildup inside roof:

Because a white roof itself is cooler than a black roof, the white-roofed building is more prone to condensation build up inside the roof on winter days.

Maintenance costs:

White roofs have to be cleaned to maintain their cooling effect. If the roof is not cleaned it loses the anticipated benefits.

Will white roofs provide a solution to the phantom menace of global warming? Probably not, but the idea may sound good. A 2011Stanford study, published in the Journal of Climate: “‘Effects of Urban Surfaces and White Roofs on Global and Regional Climate,” estimated that “worldwide conversion to white roofs, accounting for their albedo effect only, was calculated to cool population-weighted temperatures by ~0.02°K but to warm the Earth overall by ~0.07° K.” That study was computer modeling. The results depend on the assumptions, and, as the author say, “the range of uncertainty may be larger than the range of results provided here.” The paper concluded that white roofs may have a small impact on the urban heat island effect, but the impact is too small to affect global warming.

The point of this story is that rather than blindly following a politically-correct, one-size-fits-all eco-fad, do your homework to choose a system that is most efficient and cost-effective for your particular application.

See also some other “great” government ideas:

How Many Haz-Mat Suits Do You Need to Change a Lightbulb?

Compact fluorescent bulbs may contribute to skin cancer

Implications of new vehicle fuel efficiency standards

Renewable energy mandates raise electricity costs

Clean Coal: Boon or Boondoggle?


  1. When lofty assertions are handed down from on high, don’t you hate it when folks do their own due diligence to make sure the assertion actually holds water?

    Happens with most any given assertion in the global warming issue, it’s a wonder this whole thing has survived for as long as it has with so many faulty assertions.

  2. The only way is the nuclear way, discovered, surprise, surprise, half a century ago. With affordable, safe and clean power of Gen III & IV reactors, to say nothing about fusion, all this nonsense will become unnecessary. However, such nonsense is greens’ B&B (bread and…), so nukes are anathema.
    BTW, you can have your cake and enjoy it if highly efficient (50% and over) PV are developed, neither reflecting nor dissipating sunlight, but syphoning it into grid. It’s a win-win, even in winter. However, such beauties could be effected only by morphing absurd subsidies into research grants.

Comments are closed.