cosmic rays

Leaked IPCC report undercuts anthropogenic global warming

The Intergovernmental Panel on Climate Change (IPCC) is in the process of preparing its next major report (called AR5 for short) to be published next year. The IPCC has been a strong proponent of human-cause global warming via our carbon dioxide emissions from burning fossil fuels. The IPCC has always downplayed solar forcing saying that total solar irradiance (TSI) is too weak to make much of a difference. In that respect, they have a point. However, the IPCC has always ignored the other, stronger major solar variation, that of the sun’s changing magnetic field which controls the amount of cloud-forming galactic cosmic rays (GCR) reaching our atmosphere.

I reported last year on the CERN experiment which reconfirmed that cosmic rays have a strong influence on cloud formation and hence on climate. In the newly leaked draft report, the IPCC now admits to the “existence of an amplifying mechanism such as the hypothesized GCR-cloud link.”

You can read the whole story about the leaks and their implications at Anthony Watts’ “Watts Up With That”(WUWT) blog here.

The IPCC authors “are admitting strong evidence (“many empirical relationships”) for enhanced solar forcing (forcing beyond total solar irradiance, or TSI), even if they don’t know what the mechanism is.” This directly undercuts the case for anthropogenic global warming.

Refer to WUWT for updates on this breaking story.

Sunburned Whales and Ozone

A British study of whales in the Gulf of California reports that light-skinned whales show signs of sunburn. The researchers attribute this to thinning of the ozone layers which protect us from ultraviolet radiation.

A curious thing about this study, which was conducted from 2007 to 2009, is that the number of whales exhibiting signs of sunburn greatly increased over the three-year study: in 2007, 12% of the whales had blisters; in 2008, 28% had blisters; and in 2009, 68% had blisters. This large increase in blistering would suggest that the ozone layer is rapidly decreasing. Yet NASA says “UV exposure has increased over the last 30 years, but stabilized since the mid-1990s.” Obviously, these researchers need more government grants to take more tropical cruises to further study this problem.

Since the 1970s, scientists hypothesized that chlorine compounds could react in the atmosphere to decrease the protective layer of ozone (O3) which blocks some of the ultraviolet rays impinging on the earth. In 1985, scientists noticed that the ozone layer over the Antarctic was very thin. (Later research would find that this thinning is an annual event and also varies on longer cycles.) This discovery caused a political furor and in 1987, the Montreal Protocol banned chloro-fluoro-carbons (CFCs) aka freon, from air conditioners and refrigerators.

The claim that CFCs were responsible for the perceived thinning remains controversial. In 2007 chemists poked holes in the ozone theory in a study published in Nature. These researchers found that the decomposition of chlorine compounds by light was much slower than had been assumed and “at least 60% of ozone destruction at the poles seems to be due to an unknown mechanism.”

What could this unknown mechanism be? In 2009, in a paper published in Physical Review Letters found a correlation between cosmic rays and ozone depletion. The abstract says:

“This Letter reports reliable satellite data in the period of 1980–2007 covering two full 11-yr cosmic ray (CR) cycles, clearly showing the correlation between CRs and ozone depletion, especially the polar ozone loss (hole) over Antarctica. The results provide strong evidence of the physical mechanism that the CR-driven electron-induced reaction of halogenated molecules plays the dominant role in causing the ozone hole. Moreover, this mechanism predicts one of the severest ozone losses in 2008–2009 and probably another large hole around 2019–2020, according to the 11-yr CR cycle.”

If these two research groups are right, then once again, a trumped-up environmental crisis is proven to be false and we went to the expense of banning CFCs for nothing.

Ice Ages and Glacial Epochs

If you have been reading my series on the geological history of Arizona (see Article Index), you may have noticed that the Earth has plunged into an ice age every 145 million years or so. But wait, haven’t ice ages occurred more frequently? No. There is confusion because the term “ice age” is frequently misused by Journalists (and often by many geologists) when they really mean glacial epoch. So what is the difference? An ice age consists of several glacial epochs separated by warmer interglacial periods.

A glacial epoch is a time during which much of the earth’s surface is covered by glaciers. The frequency and duration of glacial epochs are related to the position and orientation of the earth with respect to the sun. The location of the continents also influences the severity of glacial epochs because continents confine ocean currents. For the last 500,000 years of our current ice age, the glacial epoch-interglacial cycle has had a periodicity of 100,000 years. Prior to 500,000 years ago, the glacial-interglacial cycle was 41,000 years. We are now enjoying an interglacial period.

Ice Ages

Our current ice age, called the Pleistocene, started about 2.6 million years ago. Ice ages are related to the position of the solar system within the galaxy. Ice ages have occurred whenever the solar system passes through one of the five known spiral arms of our galaxy, which occurs at intervals of about 145 million years (± 10 million years).

What do stars have to do with ice ages? The hypothesis, greatly simplified is this: Star density within the spiral galactic arms is much greater than in the galactic disk, hence, the flux of cosmic rays is much greater. Cosmic rays penetrating our atmosphere collide with molecules in the air and produce ionization. The ionized particles attract water and produce more clouds than normal. The clouds reflect sunlight which causes cooling. There is both observational and experimental evidence to support this hypothesis. Cosmic ray flux can be deduced from the so-called cosmogenic nuclides, such as beryllium-10, carbon-14, and chlorine-36, as measured in ancient sediments, trees, shells, and in meteorites. The geologic reconstruction of temperature is based on oxygen-18 isotopes from fossils and cave stalagmites. Also, glaciation leaves distinctive deposits and land-forms.

In the graph below, the top panel shows several calculated cosmic ray flux reconstructions. In the bottom panel, that curve is flipped to represent the cooling effect. Notice that the cosmic ray flux coincides with the geologic reconstruction of ice ages. (The green “residual” curve represents the mathematical variance between models and observations.)


Glacial Epochs

Glacial epochs within ice ages seem to be controlled by the relationship of the earth to the sun. There are three main variations called Milankovitch cycles (after Serbian geophysicist Milutin Milankoviæ who first calculated the cycles): Orbital Eccentricity, Axial Obliquity, and Precession of the Equinoxes. All these cycles affect the amount and location of sunlight impinging on the earth. The following explanation of the cycles are summarized from The Resilient Earth:

Eccentricity cycle of 100,000 years

Earth’s orbit goes from measurably elliptical to nearly circular in a cycle that takes around 100,000 years. When Earth’s orbital eccentricity is at its peak (~9%), seasonal variation reaches 20-30%. Additionally, a more eccentric orbit will change the length of seasons in each hemisphere by changing the length of time between the vernal and autumnal equinoxes. The variation in eccentricity doesn’t change regularly over time, like a sine wave. This is because Earth’s orbit is affected by the gravitational attraction of the other planets in the solar system.

Where we are now: Earth’s current orbital eccentricity is 0.0167, which is relatively circular. Presently, Earth’s distance from the Sun at perihelion, on January 3rd, is 91 million miles. Earth’s distance from the Sun at aphelion, on July 4th, is 95 million miles. This difference between the aphelion and perihelion causes Earth to receive 7% more solar radiation in January than in July. Currently, Earth’s orbital eccentricity is close to the minimum of its cycle. There is also a weak variation cycle of 413,000 years.

Axial Obliquity cycle of 41,000 years

The second Milankovitch cycle involves changes in obliquity, or tilt, of Earth’s axis which varies on a 41,000 year cycle from 22.1° to 24.5°. The smaller the tilt, the less seasonal variation there is between summer and winter at middle and high latitudes. For small tilt angles, the winters tend to be milder and the summers cooler. Cool summer temperatures are thought more important than cold winters, for the growth of continental ice sheets. This implies that smaller tilt angles lead to more glaciation.  Where we are now: Currently, axial tilt is approximately 23.45 degrees, reduced from 24.50 degrees just a thousand years ago.

Precession cycle of 23,000- 25,800 years

The third cycle is due to precession of the spin axis. As a result of a wobble in Earth’s spin, the orientation of Earth in relation to its orbital position changes. This occurs because Earth, as it spins, bulges slightly at its equator. The equator is not in the same plane as the orbit of Earth and other objects in the solar system. The gravitational attraction of the Sun and the Moon on Earth’s equatorial bulge tries to pull Earth’s spin axis into perpendicular alignment with Earth’s orbital plane. Earth’s rotation is counterclockwise [viewed from above the north pole]; gravitational forces make Earth’s spin axis move clockwise in a circle around its orbital axis. This phenomenon is called precession of the equinoxes because, over time, this backward rotation causes the seasons to shift.

The full cycle of equinox precession takes 25,800 years to complete. Due to the eccentricity cycle, Earth is closest to the Sun in January and farther away in July, but the northern hemisphere is tilted away. Due to precession, the reverse will be true 12,900 years from now. The Northern Hemisphere will experience summer in December and winter in June. The North Star will no longer be Polaris because the axis of Earth’s rotation will be pointing at the star Vega instead.

Individually, each of the three cycles affect insolation patterns. When taken together, they can partially cancel or reinforce each other in complicated ways.

Glacial epochs can be triggered when tilt is small, eccentricity is large, and perihelion, when Earth is closest to Sun, occurs during the Northern Hemisphere’s winter. Perihelion during the Northern Hemisphere winter results in milder winters but cooler summers, conditions that keep snow from melting over the summer. Deglaciation is triggered when perihelion occurs in Northern Hemisphere summer and Earth’s tilt is near its maximum. There are other factors which act to enhance the forcing effects of the cycles. These include various feedback mechanisms such as snow and ice increasing Earth’s albedo, changes in ocean circulation and enhanced greenhouse heating due to increased CO2 and water vapor concentrations.

Solar Cycles

The sun itself goes through cycles of solar intensity and magnetic flux. When the cycles are in a strong phase, the amount of cosmic rays entering the atmosphere is reduced, there are fewer clouds to block the sun, so it is warmer. When solar cycles wane, as is beginning to happen now, more cosmic rays enter the atmosphere and produce more clouds which block the sun, so it becomes cooler.

The number of sunspots (hence magnetic flux) varies on an average cycle of 11 years. There are also 87-year (Gliessberg) and 210-year (DeVriess-Suess) cycles in the amplitude of the 11-year sunspot cycle which combine to form an approximately 1,500-year cycle of warming and cooling. So far, there is no evidence that atmospheric carbon dioxide has anything to do with the cause of ice ages or glacial epochs.  The graph below shows the correlation between temperature and sunspot cycles, and only coincidental correlation with carbon dioxide.



See also: Climate change in perspective, a tutorial for policy makers


Hoffman, D.L. and Simmons, A., 2008, The Resilient Earth, an online book:

Shaviv, N.J., 2003, The spiral structure of the Milky Way, cosmic rays, and ice age epochs on Earth, New Astronomy 8, 39. (link)

Shaviv, N.J., and Veizer, Jan, 2003, Celestial Driver of Phanerozoic Climate, GSA Today, July 2003.

Veizer, Jan, 2005, Celestial Climate Driver: A Perspective from Four Billion Years of the Carbon Cycle, Geoscience Canada, V. 32, no. 1.